How can we use Solar Energy for our civilisation?

Tutorial with Experiments for visiting young students from China

Thomas Nordmann TNC Consulting AG Switzerland

July 31th 2017 in cooperation with Gregory MacKinnon Professor of Science & Technology Education School of Education, Acadia University Wolfville, Nova Scotia, Canada

How can we use Solar Energy for or civilisation?

Agenda

- What is Solar Energy?
- How can we use Solar Photovoltaic?
- Where is Photovoltaic used today?
- How can we store Solar PV for the night?
- Who is the leader in Photovoltaic application?
- How can we build our first solar electric car?
- Test drive and first competition in Nova Scotia!

+ +

• Your question my answer?

TNO Advanced Energy Concepts

Solar Power on earth: Power 0 - 1'000 W/m² Energy/Year: 600 - 1'200 kWh/m²

Solar Power on earth: Power 0 - 1'000 W/m² Energy/Year: 600 - 1'200 kWh/m²

Solar Power on earth: Power 0 - 1'000 W/m² Energy/Year: 600 - 1'200 kWh/m²

the Sun

The photoelectric effect 156 mm x 156 mm d 0.2 mm η = 12 ... 19 % \approx 10 gram of silizium $\approx 4 W_p$ power output 12 -19% efficiency

©TNC 2017 •

nced Energy Concept

Where ist Photovoltaic used today?

15

TN Graduated Energy Concepts Still in good shape and in operation 2017

From your first solar electric car to a PV charcher?

TNG Advanced Energy Concepts

This PV Cell has I Volt x 0.5 Amp = 0.5 Watt of Power

This PV Chargers has 4.5 Watt of Power

My PV installation with 6'000 Watt of Power

My PV for the heat-pump and electromobilit

Power for electromobilit in my Smart Energy Home

- 22 kWh/100 km → 4'400 kWh/20'000 km
 Charge η > 80%
 PV of 5 kWp is needed!

Thank you for your interest in Solar Power